TUBULAR SURFACES WITH DARBOUX FRAME IN GALILEAN 3-SPACE
نویسندگان
چکیده
منابع مشابه
Linear Weingarten Rotational Surfaces in Pseudo-Galilean 3-Space
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we classify linear Weingarten rotational surfaces in G3. A linear Weingarten surface is the surface having a linear equation between the Gaussian curvature and the mean curvature of a surface. In last section, we construct isotropic rotational surfaces in G3 with prescribed mean curvature...
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملClassification of Factorable Surfaces in the Pseudo-galilean Space
In this paper, we introduce the factorable surfaces in the pseudo-Galilean space G3 and completely classify such surfaces with null Gaussian and mean curvature. Also, in a special case, we investigate the factorable surfaces which fulfill the condition that the ratio of the Gaussian curvature and the mean curvature is constant in G3.
متن کاملSurfaces of Constant Curvature in the Pseudo-Galilean Space
We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of...
متن کاملClassification of Rotational Surfaces in Pseudo-galilean Space
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we characterize rotational surfaces in G3 in terms of the position vector field, Gauss map and Laplacian operator of the second fundamental form on the surface.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Facta Universitatis, Series: Mathematics and Informatics
سال: 2019
ISSN: 2406-047X,0352-9665
DOI: 10.22190/fumi1902253k